Updates to smartinit downscaling in 2014-2015

April 17, 2015 NCEP/EMC

August, 2014 V3.2.8 Changes to Downscaled Grids

- 5 km CONUS / 6 km Alaska DNG grids extended to 192-h via DGEX
- Addition of Haines Index for Fire weather
- Improved 10-m wind treatment
 - Use mass-consistent wind field model
 - Based on velocity potential, incorporating local terrain gradients
- DGEX extension will not be on AWIPS simultaneously with NAM implementation, this will probably occur sometime during fall 2014.

Improved representation of the effects of local terrain on winds

Correction to NAM/DGEX Wind Downscaling Into Production on Nov. 13, 2014 12 UTC

Nov. 2014 V3.3.0 Diagnostic Wind Downscaling Correction

- Compute the velocity potential
 - solve the Poisson Eqtn using Gauss-Seidel Method from the terrain gradients

$$U=U+S^*(PHI_{i+1}-PHI_{i-1})/\Delta X$$
 $V=V+S^*(PHI_{i+1}-PHI_{i-1})/\Delta X$
where
$$PHI=U*\Delta Z/\Delta X+V*\Delta Z/\Delta Y=velocity\ potential$$

$$\Delta Z_m=parent\ model\ topography$$

$$\Delta Z_d=2.5\ km\ NDFD\ grid\ topography$$

Smartinit upgrade Q2FY15 V3.3.3

- Haines Index for NAM/DGEX on AWIPS
 - Correction to AWIPS version
 - Error in Dewpoint depression calculation
 - Error in lower limit
 - modified to use WMO headers

- □ Corrected T-1, T-2 hours time stamp
- Integrated smartinit code with GFS DNG
 - smartinit.fd changes

Haines Index Upgrade

V3.3.3

- Measure of fire growth potential
 - combines both the instability and dryness of the air by examining the lapse rate between two pressure levels and the dryness of one of the pressure levels.
 - 2 = moist, stable, 6= dry, very unstable atmosphere
- \square HI = HI_t + Hi_m
 - > HI_t=Slope_t * ΔT + Intercept_t
 - $ightharpoonup HI_m = Slope_m^* T_{d-dep} + Intercept_m$ where $T_{d-dep} = (T_p - Td_p)$: dew point depression
 - $T_d = (R^* 237.3) / (1.0 R)$ $R = \log(RH_p) / 7.5 + (T_p/(T_p + 237.3))$

Haines Index

D.A. Haines, 1988, Nat. Wea. Dig

Level	ΔΤ	P level for T _p	Std T Lapse	T interc	Std Td Lapse	Td intercpt
Low Psfc>950mb Zsfc <540m	$T_{950} - T_{850}$	850 mb	0.2	1.0	0.2	0.6
Middle Psfc>850mb Zsfc<1456m	T ₈₅₀ - T ₇₀₀	850 mb	0.183	0.75	0.125	0.9375
High Psfc<850mb Zsfc>1456m	T ₇₀₀ - T ₅₀₀	700 mb	0.2	-1.8	0.143	-0.428

For DNG, corresponding standard atmosphere elevation used instead of varying surface pressure

 To provide static low/middle/high reference level required for effective use by forecaster

Calculation Reference Level

from ground elevation

1(green <540 m) = use <u>low</u> level Haines Index calculation 2(yellow <1456 m) = use <u>mid</u> level Haines Index calculation 3(red >1456 m) = use <u>high</u> level Haines Index calculation

NAM CONUS Nest vs DNG 2.5 km

Haines Index: Feb 5, 2015, 12 UTC

CONUS Nest vs DNG 2.5 km

CONUS Nest vs DNG 2.5 km

Comparison of Z vs P reference level approach

Summary

■ Haines Index

- Using static reference levels
- > AWIPS DRG written (NWS fire weather)
- AWIPS WFO headers developed (NCO)
- Correction to computation
- Similar to NAM nest outputs
- Higher than Raob based Haines Index

Synchronized with GFS

- One executable for GFS/NAM/DGEX/HRW & various domains
 - CONUS 2.5 and 5 km
 - Alaska 6 and 3 km
 - Guam 2.5 km (from GFS and HRW)
 - Hawaii, Puerto Rico

Q3FY15 Smartinit Downscaling Upgrade

Project Status as of 01/15/2015

Project Information and Highlights

<u>Lead</u>: Jeff McQueen, Manuel Pondeca, EMC and Chris Magee, NCO <u>Scope</u>: Significant upgrade that introduces:

- Expanded CONUS 2.5 km domain;
- GRIB2 input/output;
- Physics upgrade (adiabatic wind adjustments, improved coastline adjustments for lakes, temperatures in valleys);
- NLDAS 2 m temperature, spec. humidity option;
- New products (significant weather, 80 m winds for Energy)
- Code optimization with EMC;

Expected Benefits:

- 1. Improved winds and temperatures in complex terrain
- 2. Address forecaster concerns around coastlines and in valleys
- 3. Provide improved background fields for RTMA/URMA

/		
	\mathbf{G}	
\		

Scheduling

Milestone (NCEP)	Date	Status
Initial coordination with SPA team	Developer	3/01/15
EMC testing complete / EMC CCB	Developer	4/01/15
Final Code Delivered to NCO	Developer	4/04/15
Technical Information Notice Issued	Developer	5/1/15
SPA begins prep work for 30 day test	NCO	5/1/15
30-day evaluation begins	NCO	6/1/15
30-day evaluation ends	NCO	6/1/15
IT testing ends	NCO	
Management Briefing	NCO	6/10/15
Operational Implementation	NCO	6/15/15

Issues/Risks

Issues:

Risks:

Mitigation:

Finances

Associated Costs:

Funding Sources: EMC Base: T2O 3 man-months NCO Base: 1 man-months for implementation, 1 man-month annually for maintenance

